Observational Learning in Random Networks

نویسندگان

  • Julian Lorenz
  • Martin Marciniszyn
  • Angelika Steger
چکیده

In the standard model of observational learning, n agents sequentially decide between two alternatives a or b, one of which is objectively superior. Their choice is based on a stochastic private signal and the decisions of others. Assuming a rational behavior, it is known that informational cascades arise, which cause an overwhelming fraction of the population to make the same choice, either correct or false. Assuming that each agent is able to observe the actions of all predecessors, it was shown by Bikhchandani, Hirshleifer, and Welch [1, 2] that, independently of the population size, false informational cascades are quite likely. In a more realistic setting, agents observe just a subset of their predecessors, modeled by a random network of acquaintanceships. We show that the probability of false informational cascades depends on the edge probability p of the underlying network. As in the standard model, the emergence of false cascades is quite likely if p does not depend on n. In contrast to that, false cascades are very unlikely if p = p(n) is a sequence that decreases with n. Provided the decay of p is not too fast, correct cascades emerge almost surely, benefiting the entire population.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Merging two variables (observational learning and self-talk), is not preference one variable evermore

Observing a model let learners to make a plan of action that can be used for learning motor skills. Moreover, self-talk is a conversation that performers use it either apparently or secretly in order to think about their performance and reinforce it. Therefore, the purpose   of this study was to investigate the effect of observational learning, self-talk and combination of both on boy’s perform...

متن کامل

Investigate The Relationship between Users' Perception of Social Networking with Collaborative Learning of Health Care Providers in The field of Thalassemia Prevention prevention

Background and Aim: Todays, various social networks such as Viber, WhatsApp, Telegram, Line and so on have affected all aspects of life. One of the most important benefits of these networks is their application in the education sector. The present study intends to investigate the relationship between userschr('39') perceptions of social networks and the collaborative learning of health care pro...

متن کامل

Learning Bayesian Networks from Correlated Data

Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between obs...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007